Picture of South32 logo

S32 South32 News Story

0.000.00%
au flag iconLast trade - 00:00
Basic MaterialsBalancedLarge CapNeutral

REG - South32 Limited - Sierra Gorda Copper Mine: Mineral Declaration

For best results when printing this announcement, please click on link below:
http://newsfile.refinitiv.com/getnewsfile/v1/story?guid=urn:newsml:reuters.com:20230824:nRSX3293Ka&default-theme=true

RNS Number : 3293K  South32 Limited  24 August 2023

 

 

24 August 2023

 

South32 Limited

(Incorporated in Australia under the Corporations Act 2001 (Cth))

(ACN 093 732 597)

ASX / LSE / JSE Share Code: S32; ADR: SOUHY

ISIN: AU000000S320

south32.net

 

 

 

 

SIERRA GORDA COPPER MINE - MINERAL RESOURCE DECLARATION

 

South32 Limited (ASX, LSE, JSE: S32; ADR: SOUHY) (South32) is pleased to
report a first time Mineral Resource estimate for the Sierra Gorda copper
mine. South32 acquired a 45% interest in Sierra Gorda in February 2022 and has
joint control alongside 55% joint venture (JV) partner KGHM Polska Miedź.

The sulphide Mineral Resource estimate (Table A) is reported in accordance
with the JORC Code (2012)(( 1 )) guidelines at 1.89 billion tonnes, averaging
0.36% total copper, 0.016% total molybdenum and 0.06 g/t gold, with a
contained 6.81 million tonnes of copper, 296 thousand tonnes of molybdenum and
3.58 million ounces of gold, at a total copper equivalent 2  grade of 0.41%.

 

Sierra Gorda's first time Mineral Resource estimate has confirmed a large
scale, long-life copper deposit with significant growth potential. We are
investing to unlock this value and grow future copper production, executing
the capital efficient plant de-bottlenecking project and progressing study
work for the fourth grinding line expansion. The fourth grinding line has the
potential to increase copper output by 15 to 20%, with a final investment
decision for this expansion planned in H2 FY24.

 

The exploration opportunity at Sierra Gorda remains significant, including
near-mine and regional opportunities. The Mineral Resource remains open at
depth, with further drilling campaigns planned to test the potential for
further growth. Separately, an exploration drilling campaign is underway at
the priority Catabela Northeast copper porphyry prospect, located
approximately three kilometres from Sierra Gorda's current operations.

 

We are also studying options to realise value from oxide material 3  that is
stockpiled at surface.

 

Sierra Gorda is a large, conventional, open pit copper mine located in the
Antofagasta region of northern Chile. Sierra Gorda benefits from high quality,
modern processing equipment, with significant historical capital investment.
The operation is serviced by established infrastructure, including renewable
power and a seawater pipeline, with freight rail and a national highway
connecting it to the ports of Antofagasta and Angamos. The copper concentrate
produced at the operation is transported by truck and rail to the ports of
Antofagasta and Angamos for international export to end markets.

Full details of the update are contained in this announcement.

 

Competent Person Statement

Mineral Resource estimate

 

The information in this report that relates to Mineral Resources for the
Sierra Gorda deposit is presented on a 100% basis, represents an estimate as
at 30 June 2023 and is based on information compiled by Ian Glacken and Omar
Enrique Cortes Castro. Mr Glacken is a full-time employee of Snowden Optiro
and Mr Cortes is a full-time employee of Sierra Gorda SCM. Mr Glacken is a
Fellow and Mr Cortes is a Member of the Australasian Institute of Mining and
Metallurgy. Mr Glacken and Mr Cortes each have sufficient experience relevant
to the style of mineralisation and type of deposit under consideration and to
the activities being undertaken, to qualify as Competent Persons as defined in
the 2012 Edition of the Australasian Code for Reporting of Exploration
Results, Mineral Resources and Ore Reserves (the JORC Code). The Competent
Persons consent to the inclusion in this report of the matters based on their
information in the form and context in which it appears.

About us

 

South32 is a globally diversified mining and metals company. Our purpose is to
make a difference by developing natural resources, improving people's lives
now and for generations to come. We are trusted by our owners and partners to
realise the potential of their resources. We produce commodities including
bauxite, alumina, aluminium, copper, silver, lead, zinc, nickel, metallurgical
coal and manganese from our operations in Australia, Southern Africa and South
America. With a focus on growing our base metals exposure, we also have two
development options in North America and several partnerships with junior
explorers around the world.

 Investor Relations
 Ben Baker

T          +61 8 9324 9363

M        +61 403 763 086

E          Ben.Baker@south32.net
 (file:///C%3A/Users/wilsr1/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/3ZTI7L8N/Ben.Baker@south32.net)
 Media Relations
 Jamie Macdonald                                                                                                                                 Miles Godfrey

T          +61 8 9324 9000
T          +61 8 9324 9000

M        +61 408 925 140
M        +61 415 325 906

E          Jamie.Macdonald@south32.net
E          Miles.Godfrey@south32.net
 (file:///C%3A/Users/wilsr1/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/3ZTI7L8N/Jamie.Macdonald@south32.net)   (file:///C%3A/Users/wilsr1/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/3ZTI7L8N/Miles.Godfrey@south32.net)

 

Further information on South32 can be found at www.south32.net
(http://www.south32.net) .

 

Approved for release to the market by Graham Kerr, Chief Executive Officer

JSE Sponsor: The Standard Bank of South Africa Limited

24 August 2023

 

Table A: Mineral Resources for the Sierra Gorda Deposit as at 30 June 2023 in
100% terms

 Classification                                         Contained Metal
                              Mt(2)  %     %      g/t   Mt      Kt      Moz

CuT
MoT
Au
Cu
Mo
Au
 Measured Mineral Resources   418    0.39  0.024  0.07  1.62    102     0.89
 Indicated Mineral Resources  562    0.33  0.013  0.06  1.87    73      1.04
 Inferred Mineral Resources   906    0.37  0.013  0.06  3.32    120     1.65
 Total Mineral Resources      1,890  0.36  0.016  0.06  6.81    296     3.58

Million dry metric tonnes(2), % CuT- per cent total copper; %MoT- per cent
total molybdenum; g/t Au- grams/tonne of gold; Kt- Kilo tonnes; Mt- Million
tonnes; Moz- Million ounces

 

Notes:

1.        Cut-off grade: NSR of >0 US$/t. Input parameters for the
NSR calculation are based on long term price forecasts for copper, molybdenum
and gold as estimated by JV Partners; mining, haulage, processing, shipping,
handling and G&A charges. Metallurgical recovery assumptions differ for
geological domains with an average of 85% copper, 55% for molybdenum and 39%
for gold. The prices are commercially sensitive and are not disclosed.

2.        All volumes are reported as dry metric tonnes.

3.        All tonnes and grade information have been rounded to reflect
the relative uncertainty of the estimate, hence small differences may be
present in the totals.

 

ESTIMATE OF MINERAL RESOURCE FOR SIERRA GORDA

South32 confirms the first-time reporting of a Mineral Resource estimate for
the Sierra Gorda copper deposit as at 30 June 2023 (Table A).

The estimate of Mineral Resource is reported in accordance with the
Australasian Code for Reporting of Exploration Results, Mineral Resources and
Ore Reserves, 2012 (JORC Code) and the Australian Securities Exchange Listing
(ASX) Rules. The breakdown of the estimate of Mineral Resources into the
specific JORC Code categories is contained in Table A. This report summarises
the information contained in the JORC Code Table 1, which is included as
Annexure 1.

Geology and geological interpretation

The Sierra Gorda deposit is in the plain of the intermediate valleys between
the Cordillera de la Costa and the source of the Cordillera de Los Andes.
Exploration and research identified three metallogenic belts from different
ages related to hydrothermal systems, with copper, molybdenum and gold
mineralisation. Most of the world-class copper porphyries that exist in
northern Chile are located within the three belts. Sierra Gorda is located in
the central belt.

Regionally, a sequence of Early Cretaceous volcanic rocks that were intruded
by a granitic complex of Palaeocene age and a series of smaller younger
intrusions have served as host rock for numerous hydrothermal mineralisation
systems of copper, molybdenum and gold. The main structural systems are
defined by regional faults in north-south and northwest directions, which
control and serve as flow channels for systems of alteration and economic
mineralisation.

Drilling techniques

The Mineral Resource estimate for the Sierra Gorda deposit was completed using
a total of 403 diamond drill holes (DD) (151,243m) with HQ (core
diameter-63.5mm), 1,366 reverse circulation (RC) drill holes (261,147m) with a
hole diameter of 139.7mm and 366 holes with RC pre-collar to cover the
supergene zone, followed by diamond drilling (173,185m). Most of the drill
holes were orientated in the east-west direction, with variable dips. A small
number of holes were drilled in an east-northeast direction and some of the
shallower drill holes in the active open pit area have a radial pattern.

Sampling and sub-sampling techniques

Logging data from 2,135 drill holes were used for geological interpretation
and assay results from 1,750 drill holes were used for resource estimation.

Until 2021, drill half cores were sampled at 2m intervals. The current
practice is to use quarter cores for sampling. For RC drilling, a 2m sample
(up to 80kg) is reduced to 10kg using three-stage splitting with a riffle
splitter before being sent to the laboratory. Historically, different
laboratories were used for sample preparation and chemical analysis. Since
2018, GeoAssay in Antofagasta, an ISO 9001:2000 certified external laboratory,
has been engaged for sample preparation and chemical analysis. Preparation for
both DD and RC involves crushing to 90% passing 1.65mm. The crushed samples
are reduced using a riffle splitter to 1,000g and then pulverised to 95%
passing 100µm. All logging was verified by geologists throughout each
drilling program and reviewed independently against core photos or RC chips by
an alternate geologist prior to geological interpretation.

Sample analysis method

Samples of 1g taken from 1,000g pulp were processed at the GeoAssay
laboratory, where the samples were digested in a mixture of nitric (95%) and
hydrochloric (5%) acid and the concentration of total molybdenum (MoT) and
total copper (CuT) was measured using Atomic Absorption Spectroscopy (AAS). A
30g to 50g charge was used to determine gold (Au) grade using the fire assay
method, followed by AAS. A range of certified reference materials (CRMs) was
routinely submitted to monitor assay accuracy, with low failure rates within
expected ranges for this deposit style, demonstrating reliable laboratory
accuracy.

Results of routinely submitted field duplicates to monitor sample
representativity, coarse crush precision and laboratory pulp duplicates to
monitor quality control sample preparation homogeneity, and certified blank
insertions to detect cross-contamination were all within an acceptable range
for resource modelling.

Estimation methodology

Resource estimation was performed by ordinary kriging interpolation for the
three elements of economic interest (CuT, MoT and Au). Search estimation
criteria were consistent with geostatistical models developed for each
estimation domain according to the appropriate geological controls. Validation
included statistical analysis, swath plots and visual inspection. A discrete
gaussian 'change of support' model was developed to analyse the level of
smoothing after comparison with the resource model.

Specific gravity measurements from drill cores were used as the basis for
calculating average densities for each estimation domain and oxidation style
(i.e. oxide, supergene and hypogene). Average specific gravities from all
samples from a domain were used for the domain tonnage conversion factors when
calculating tonnage for both mineralised and non-mineralised material.

Mineral Resource classification

A multi-criteria approach was used to classify the Mineral Resource. The
classification category outcome from the complete assessment is as below.

·      Measured Mineral Resources: Applied to blocks where there is 90%
confidence that the block grade is within 15% on a quarterly tonnage parcel
and the average distance of the three nearest samples is less than 50m.

·      Indicated Mineral Resources: Applied to blocks where there is a
90% chance that the block grade is within 15% on an annual tonnage basis, the
slope of regression from ordinary kriging is greater than 0.6 and the average
distance of the three nearest samples is more than 50m.

·      Inferred Mineral Resources: Blocks within the variogram range,
but which failed the above criteria.

Mining and metallurgical methods and parameters

A pit optimisation (using the Lerchs-Grossman algorithm) was completed to
evaluate Reasonable Prospects for Eventual Economic Extraction (RPEEE) for
constraining the resource boundary (both laterally and vertically) using the
parameters in the Life of Mine Plan and JV partner agreed price protocols.

Metallurgical recoveries were derived based on current operational performance
and test work. The grade recovery curve was then derived from the inputs and
has been incorporated in the resource model for all paying elements (CuT, MoT
and Au). Metallurgical recovery assumptions differ between geological and
weathering domains and vary considerably. Average process recovery for copper
was 85%, for molybdenum was 55% and for gold was 39%.

Cut-off grade

Sierra Gorda is a copper deposit with molybdenum and gold which uses an
equivalent Net Smelter Return (NSR) value as the grade descriptor.

Input parameters for the NSR calculation are based on long-term JV partner
forecasts for Cu, Mo and Au pricing, after considering all costs related to
mining, haulage, processing, shipping, handling and G&A charges.

As all costs are included in the NSR calculation, all blocks reporting a
positive NSR value satisfied the assessment of reasonable prospects for
eventual economic extraction and were reported as Mineral Resources.

Additional information is detailed in Annexure 1.

Annexure 1: JORC Code Table 1 - Mineral Resource estimate for Sierra Gorda deposit

The following tables provide a summary of important assessment and reporting
criteria used at the Sierra Gorda deposit for the reporting of Mineral
Resources in accordance with the Table 1 checklist in The Australasian Code
for the Reporting of Exploration Results, Mineral Resources and Ore Reserves
(The JORC Code, 2012 Edition) on an 'if not, why not' basis.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

 Criteria                                                 Commentary
 Sampling techniques                                      ·    The Mineral Resource estimate for the Sierra Gorda copper deposit was
                                                          completed using a total of 1,750 diamond drill holes (DD) and reverse
                                                          circulation (RC) drill holes. A total of 2,135 drill holes were used for
                                                          geological interpretation.

                                                          ·    A heterogeneity study, to determine the appropriate sample size was
                                                          undertaken by Sierra Gorda SCM in 2014. The sample reduction and preparation
                                                          is in line with the study.

                                                          ·    A quarter of the RC sample volume and quarter cores were processed
                                                          and analysed for every twentieth sample (duplicate) to assess sample
                                                          representativity. The analytical results were within +/- 10% for more than 98%
                                                          of the samples for 2,022 drilling results.

                                                          ·    Samples from DD and RC drilling were collected at 2m intervals. For
                                                          RC drilling, the samples collected from 2m intervals (up to 80kg) were reduced
                                                          by riffle splitter to 10kg and sent to the laboratory. At the laboratory, 10kg
                                                          samples were crushed to 90% passing 1.65mm. The crushed samples were reduced
                                                          to 1,000g using a lineal cutter (CRC, Crushing Robotic Cell) and the 1,000g
                                                          samples were pulverised to 95% passing 100µm. For DD, prior to 2021, half
                                                          cores were used for sub-sampling for chemical analysis. Since 2021, only
                                                          quarter cores have been used; the other quarter is used for geometallurgical
                                                          assessment. Half and quarter DD core samples from 2m intervals (approx. 3kg to
                                                          4kg) were crushed to 90% passing 1.65mm. The crushed samples were reduced to
                                                          1,000g using a riffle splitter and then pulverised to 95% passing 100µm.
                                                          Finally, 1g pulp samples were subjected to chemical analysis using acid
                                                          digestion (nitric acid at 95% concentration and hydrochloric acid) followed by
                                                          Atomic Absorption Spectroscopy (AAS). A 30g to 50g charge was used to
                                                          determine gold (Au) grade using the fire assay method, followed by AAS.
 Drilling techniques                                      ·    A total of 403 diamond drill holes (DD) (151,243m) with HQ core (hole
                                                          diameter of 63.5mm), 1,366 reverse circulation (RC) drill holes (261,147m)
                                                          with a hole diameter of 139.7mm and 366 holes with RC pre-collar to cover the
                                                          supergene zone, followed by diamond drilling (173,185m) have been included in
                                                          the reported resource estimation (Figure 3).
 Drill sample recovery                                    ·    Core recovery was measured for each 3m run at the drill site for all
                                                          DD holes. The average recovery exceeded 95%.

                                                          ·    The recovery of RC drilling was determined by weighing a sample and
                                                          comparing it with the theoretical weight determined from the hole diameter.
                                                          The average recovery for all RC drilling was more than 93%.

                                                          ·    Recovery drops when drilling encounter fault zones. Recovery was
                                                          therefore maximised by managing speed of rotation and optimising drilling
                                                          fluid density.

                                                          ·    Given that the overall recovery was very high, correlation analysis
                                                          between core recovery and grade was not performed.
 Logging                                                  ·    All DD cores were logged for lithology, alteration, mineralisation,
                                                          veins and structures. Selected drill holes were logged for geotechnical data,
                                                          which includes rock quality designation (RQD), fracture frequency (FF), type
                                                          of fault and fill. Representative RC chips were collected from each RC drill
                                                          interval in a sample tray and were logged for lithology, alteration and
                                                          mineralisation.

                                                          ·    The geological parameters required for developing a geology and
                                                          mineralisation model are pre-defined in the logging software. For consistency,
                                                          the pre-defined codes are used for logging when entering information in the
                                                          centralised database.

                                                          ·    Geological logging is both qualitative and quantitative in nature.
                                                          The quantitative assessment reflected the prediction of the occurrence and
                                                          abundance of mineralisation.

                                                          ·    The DD cores were photographed in their entirety.

                                                          ·    The geological description has the appropriate level of detail to
                                                          properly support the development of a geology and mineralisation model.
 Sub-sampling techniques and sample preparation           ·    The sampling interval of 2m was based on the nature of mineralisation
                                                          and method of mining. No formal study was completed to support the sampling
                                                          interval.

                                                          ·    All DD cores for every 2m interval were longitudinally cut into equal
                                                          halves. One half of each core was further sub-divided into two equal quarters;
                                                          one to be used for chemical analysis and the other for geometallurgical
                                                          testing. The other half was stored in the core library. The approximate weight
                                                          of a 2m quarter core sample is between 3kg and 4kg. The whole quarter core
                                                          samples were sent to an external laboratory for processing and chemical
                                                          analysis.

                                                          ·    Until 2021, DD cores were cut into two equal parts at intervals of
                                                          2m, with one half used for chemical analysis and the other stored in the core
                                                          library.

                                                          ·    A 2m RC interval weighs approximately 80kg. Samples are reduced to
                                                          10kg using a riffle splitter and sent to an external laboratory for
                                                          processing.

                                                          ·    Different laboratories have been used from time to time for
                                                          preparation and chemical analysis of drill samples. Chemex was used in 2004
                                                          and in 2005 Acme and Andes Analytical Assay Ltda were used. Between 2006 and
                                                          2010 Andes prepared and analysed all drilling samples. Between 2010 and 2018,
                                                          SGS (Société Génerale de Surveillance), AAA, (Andes Analytical Assay) and
                                                          ALS (Laboratory Group) were used for sample preparation and analysis. Since
                                                          2018, GeoAssay has been engaged to do the preparation and chemical analysis of
                                                          drilling samples. All laboratories used to date are ISO 9001:2000 certified.

                                                          ·    Sample reduction and preparation for chemical analysis is summarised
                                                          below.

                                                          o  RC samples are weighed to confirm the weight received and then dried in an
                                                          oven at 105(o)C (+5(o)C) for approximately 6 to 10 hours. For RC drilling, a
                                                          2m sample (up to 80kg) is reduced to 10kg with a riffle splitter and sent to
                                                          the laboratory. At the laboratory, the 10kg samples are crushed to 90% passing
                                                          1.65mm and reduced to 1,000g using a lineal cutter (crushing robotic cell
                                                          (CRC)). The 1,000g samples are pulverised to 95% passing 100µm.

                                                          o  Core samples: For DD, prior to 2021, half cores were used for sample
                                                          preparation and chemical analysis. Since 2021, only a quarter of the core has
                                                          been used; the other quarter is used for geometallurgical assessment. Quarter
                                                          core samples from 2m intervals (approx. 3kg to 4kg) are crushed to 90 passing
                                                          1.65mm. The samples are then dried in an oven at 105(o)C (+5(o)C) for
                                                          approximately 6 to 10 hours. The crushed samples are reduced to 1,000g using a
                                                          riffle splitter and then pulverised to 95% passing 100µm.

                                                          o  The pulverised samples are passed through a rotary divider to obtain three
                                                          pulps of 200g each. One of the portions is used for chemical analysis by AAS
                                                          and the remaining two are stored as duplicates for future reference.

                                                          o  At the secondary crushing stage, the laboratory inserts 5% duplicates and
                                                          reports on them in each report as part of its internal quality control
                                                          process. The duplicate samples are processed and analysed. The results show
                                                          that 98% of the duplicate samples are within 10% of the original samples.
                                                          Sierra Gorda SCM (SGSCM) does not keep a formal account of the results.

                                                          ·    Sub-sampling and sample preparation techniques are adequate for the
                                                          declaration of Mineral Resources.

 Quality of assay data and laboratory tests               ·    A 1g pulp sample is digested using nitric acid and hydrochloric acid
                                                          and thereafter quantified using AAS. This is considered appropriate for the
                                                          type of mineralisation. The method is used to determine CuT and MoT
                                                          percentages. A 30g to 50g charge is used to determine gold (Au) grade using
                                                          the fire assay method followed by AAS.

                                                          ·    Samples are analysed in batches of 25. A batch contains 20 samples,
                                                          one certified reference material (CRM), one pulp duplicate, one field
                                                          duplicate and two blank samples.

                                                          ·    The analytical laboratory manages an internal quality control
                                                          protocol that is performed on each batch analysed. The protocol includes
                                                          analysis of three each of CRMs, duplicate samples and blank samples per batch.
                                                          The results from the laboratory's internal control samples are reported on
                                                          each certificate of analysis delivered.

                                                          ·    An analytical accuracy assessment is performed by the SGSCM team in
                                                          accordance with the 'Westgard' control rules (control/reject/warning). A
                                                          maximum of 30% relative error (RE) is accepted for the sample duplicate, a
                                                          maximum of 20% RE for the laboratory duplicate and a maximum of 10% RE for the
                                                          pulp duplicate. The acceptance limit for contamination is the equivalent of
                                                          five times the lower detection limit (5 LDD) reported by the chemical analysis
                                                          laboratory for the method and analyte of interest.

                                                          ·    All QA/QC samples submitted by SGSCM are reviewed immediately on
                                                          receipt of analytical results. Quality control standards are essentially
                                                          defined for CuT and MoT. No significant bias in the data has been identified
                                                          from the QA/QC results.

                                                          ·    Currently, duplicate pulp samples are not sent to another independent
                                                          laboratory (check or umpire analysis) to assess whether there is procedural
                                                          bias at GeoAssay, the primary laboratory.

                                                          ·    The Competent Persons consider that the nature and quality of the
                                                          chemical analysis and laboratory procedures are appropriate to support
                                                          estimation of the mineralisation grades of the Sierra Gorda deposit (Figure
                                                          6).
 Verification of sampling and assaying                    ·    All logging and chemical analysis is peer reviewed to confirm the
                                                          geology (using core photographs) and mineralisation match with the analytical
                                                          outcome. Once verification is complete, the data is authorised for inclusion
                                                          in the central database.

                                                          ·    Drill holes have not been twinned due to the disseminated nature of
                                                          mineralisation and the low 'nugget' effect. The assessment is confirmed on
                                                          review of semi-variogram models and provides confidence in the predictability
                                                          of drilling results over short and long ranges.

                                                          ·    The logging is performed on digital tablets, which are loaded as CSV
                                                          files directly to the database. The results of chemical analyses are digitally
                                                          recorded (in CSV files) and uploaded to a database in the SQL server.

                                                          ·    SGSCM has procedures in place for periodic back up of all
                                                          information, including storing periodic backup offsite.

                                                          ·    No adjustment has been made to the analytical data. For estimation
                                                          purposes, values reported as less than the detection limit by the laboratory
                                                          were assigned a value of half of the detection limit.
 Location of data points                                  ·    The mining concessions allow mining exploitation and exploration in
                                                          Chile and are regulated by the Mining Code, which establishes the UTM
                                                          coordinate system in Datum PSAD56 to be used as the official coordinate
                                                          system. The local coordinate system developed by the mine is linked to the
                                                          official coordinate system. The location of drill hole collars is surveyed by
                                                          the survey department, using Trimble R12i equipment (global navigation
                                                          satellite system), with a real-time kinematic accuracy of 8mm (horizontal) and
                                                          15mm (vertical).

                                                          ·    Geodetic satellite positioning equipment (GPS) (TOPCON brand - GR3
                                                          model, double frequency, with accuracy of 5 mm) is used for geographical
                                                          location and planimetry. A Total Topcon Station model 7501 is used to
                                                          determine surface distances and an electronic LEICA level, model DNA3, is used
                                                          to define precision elevations in the mining area.

                                                          ·    Downhole surveys are performed with a gyroscope (model STO Gyro
                                                          Master). The measurement is taken at downhole intervals between 20m and 50m
                                                          from the end of the hole. The company conducting the downhole survey
                                                          (Datawell) provides the data for each hole, which is then lodged in the
                                                          database. SGSCM is in the process of preparing a procedure to validate all
                                                          survey and depth information.

                                                          ·    Surveying procedures and practices are adequate and can be used for
                                                          mine planning purposes.
 Data spacing and distribution                            ·    No exploration results are reported.

                                                          ·    Due to the variable orientations of the drill holes, data spacing may
                                                          vary with depth. In general, drill hole collars are spaced between 50m and
                                                          100m. Infill drilling is spaced between 30m and 60m (Figure 3).

                                                          ·    The scheduling of twin drilling will be considered by SGSCM team
                                                          during future campaigns.

                                                          ·    Drill spacing is considered sufficient by the Competent Persons to
                                                          establish geological and grade continuity necessary to support a reliable
                                                          resource estimate.

                                                          ·    All samples are composited to 8m along the drill hole. The composite
                                                          length is appropriate for panel grade estimation with a block height of 16m.
 Orientation of data in relation to geological structure  ·    Most of the drill holes are orientated in the east-west direction,
                                                          with variable dip. However, there are also a small number of east-northeast
                                                          orientated drill holes, and some of the shallower drill holes in the active
                                                          open pit area have a radial pattern.

                                                          ·    The general orientation of mineralisation within the hypogene zone is
                                                          sub-vertical, with a north-northeast orientation in plan view. The drilling
                                                          holes are planned with an orientation that allows lateral recognition of the
                                                          main body, to enable edge variability to be controlled. Within the mineralised
                                                          body drilling confirms the mineralised zones and provides reasonable
                                                          confidence in defining the mineralisation.

                                                          ·    Even though the mineralisation is structurally controlled, the
                                                          structures radiate in all directions, which means that drill cores are not
                                                          generally oriented.
 Sample security                                          ·    Each sample generated is assigned a number by an automated numbering
                                                          system which allows traceability at all stages of the process.

                                                          ·    The samples are sent to the GeoAssay laboratory in Antofagasta for
                                                          preparation and chemical analysis according to a defined procedure as
                                                          described above. Transport is adequate to maintain the integrity and safety of
                                                          the samples. The results are received and are verified for storage in a custom
                                                          SQL server database.

                                                          ·    The SQL database has user-level security and there are periodic
                                                          backups of the server according to SGSCM procedure.

                                                          ·    Half cores are kept in a safe place before being processed. After
                                                          sampling, crushed cores and duplicate samples are stored in a dedicated
                                                          facility with controlled access.
 Audits or reviews                                        ·    Between 6 and 10 March 2023, Snowden Optiro was commissioned by
                                                          South32 to conduct an independent audit of the Mineral Resource estimate. The
                                                          review identified a requirement to collect additional density data and minor
                                                          improvements to QA/QC processes.

 

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

 Criteria                                                          Commentary
 Mineral tenement and land tenure status                           ·    SGSCM is owned by KGHM Polska Miedź SA (55%) and South32 Ltd (45%).

                                                                   ·    The Sierra Gorda deposit is backed by a solid mining tenure
                                                                   guarantee, granted through 249 mining concessions. Exploration of minerals is
                                                                   allowed across the effective area covered by the mining concessions, which is
                                                                   a total of 17,560.99 hectares. The Mining Code, which regulates mining
                                                                   concession activity in Chile, establishes that mining concessions grant the
                                                                   right to explore and exploit metallic and non-metallic mineral substances. The
                                                                   concessions are perpetual and are maintained indefinitely through the annual
                                                                   payment of the mining patent to the General Treasury of the Republic of Chile.
                                                                    Until the date of verification, their validity extends until 28 February
                                                                   2024 (Figure 1). Seven mining easements have also been established, which
                                                                   grant the right to occupy the surface and establish infrastructure necessary
                                                                   for the extraction and processing of minerals, covering a total area of
                                                                   33,748.94 hectares and including the water pipeline. A corresponding payment
                                                                   has been made for the mining easements and renewal of two of them will take
                                                                   place on 31 December 2023, with the remaining five to be renewed before 5
                                                                   January 2024. The annual payment of the mining easement keeps the right to
                                                                   occupy surface land belonging to the State of Chile in force. Currently, there
                                                                   are five mining easements granted for an indefinite term, while the remaining
                                                                   two have definite expiry dates:

                                                                   a) Rol 2837-2013 expires 22 March 2034 and

                                                                   b) Rol 3123-2010 expires 12 July 2025.

                                                                   For the latter easement, the renewal process has already been initiated.

                                                                   ·    Operations are carried out in compliance with the regulations and
                                                                   payments established to guarantee the viability and continuity of mining
                                                                   activities.

                                                                   ·    Royalties Law 20,026 of 2005, modified by Law 20,469 of 2010 requires
                                                                   mining companies to pay a royalty to the State of Chile, with variable rates
                                                                   on mining operating income. The royalty rate varies from 5% to 34.5%, based on
                                                                   mining operating margin.
 Exploration done by other parties                                 ·    The historical drilling of the Sierra Gorda deposit began in 1966
                                                                   with the first surveys by ITT, Cimma Mines and Chevron. The companies drilled
                                                                   108 drill holes (95RC-13DD) before 1987. Between 1991 and 1996, Outokumpu
                                                                   began the first formal exploration campaign, completing 238 drill holes
                                                                   (109RC-48DD-81 mixed). Between 1997 and 2003, RTZ drilled 61 holes (53RC-8DD).
                                                                   Two companies, Teck-Cominco and SOQUIMICH, drilled 61 holes (44RC-8DD-17
                                                                   mixed) between 1997 and 2011 on the Pampa Lina property. In parallel, Quadra
                                                                   drilled 1,069 holes between 2004 and 2012. Finally, SGSCM drilled 589 holes
                                                                   between 2013 and 2022.
 Geology                                                           ·    The Sierra Gorda deposit is located in the plain of the Intermediate
                                                                   Depression or the Intermediate Valleys located between the Cordillera de la
                                                                   Costa and the headwaters of the Cordillera de Los Andes.

                                                                   ·    Exploration and research associated with Andean metallogenesis
                                                                   identified three metallogenic belts from different ages related to
                                                                   hydrothermal systems, with copper, molybdenum and gold mineralisation, between
                                                                   20° and 27° south latitude. Metallogenic belts are differentiated by an area
                                                                   to the west located in the coastal zone of Cretaceous age (130Ma), a central
                                                                   zone of Paleocene-Early Eocene age (66Ma to 55Ma) and an eastern belt of Upper
                                                                   Oligocene age (42Ma to 31Ma). All the world-class copper porphyry deposits
                                                                   that exist in northern Chile are located at the source of the Cordillera de
                                                                   Domeyko and its continuation to the north.

                                                                   ·    Sierra Gorda is located in the Palaeocene-Early Eocene metallogenic
                                                                   belt, located at the western edge of the Domeyko range in the second region of
                                                                   northern Chile.

                                                                   ·    Regionally, a sequence of Early Cretaceous volcanic rocks that were
                                                                   intruded by a granitic complex of Palaeocene age and a series of smaller,
                                                                   younger intrusions, have served as host rocks for numerous hydrothermal
                                                                   mineralisation systems of copper, molybdenum and gold (Figure 2).

                                                                   ·    The main structural systems are defined by regional faults of
                                                                   north-south and northwest direction, which control and serve as conduits for
                                                                   fluid for alteration of the host rock and for deposition of economic
                                                                   mineralisation.

                                                                   ·    Figure 4 shows a cross section of the chalcopyrite mineralisation
                                                                   main body and drilling information used for the modelling and estimation
                                                                   processes.
 Drill hole information                                            ·    Exploration results are not reported as part of the Mineral Resource
                                                                   estimate.

                                                                   ·    Figure 3 shows the collar location of the drilling information used
                                                                   to develop the Mineral Resource estimate.

                                                                   ·    A metal equivalent has been used for reporting the Mineral Resource
                                                                   estimate.
 Data aggregation methods                                          ·    Data is not aggregated, other than being composited to 8m using a
                                                                   length weighted average for geostatistical analysis and estimation.

                                                                   ·    The composite length of 8m is considered appropriate based on the
                                                                   nature of mineralisation and the method of mining (including bench height).
 Relationship between mineralisation widths and intercept lengths  ·    The main ore body is vertical and the dominant drilling orientation
                                                                   is east-west, with variable dips (vertical to 65°) depending on the location
                                                                   of the drill hole collar. Where mineralisation is disseminated or stockwork in
                                                                   nature, drilling also uses a variety of dip angles (vertical to 65°).
 Diagrams                                                          ·    Relevant maps and sections are appended to this document.
 Balanced reporting                                                ·    Exploration results are not specifically reported as part of the
                                                                   Mineral Resource estimate.
 Other substantive exploration data                                ·    SGSCM is currently conducting a geological survey (lithology,
                                                                   alteration and structural system) of the entire mining property and geophysics
                                                                   studies (IP-MIMDAS and magnetometry).
 Further work                                                      ·    SGSCM is completing annual infill drilling programs to improve
                                                                   confidence in the Mineral Resource estimate within the Catabela Pit and to
                                                                   identify potential extensions to the deposit. In parallel, exploration is
                                                                   ongoing outside the existing pit shell to assess the continuity of
                                                                   mineralisation laterally, with emphasis on known structural trends and other
                                                                   potential satellite deposits.

 

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1 and where relevant in section 2, also apply to
this section.)

 Criteria                                    Comment
 Database integrity                          ·    The analytical results, once received, are verified and stored in a
                                             custom SQL server database. Since the start of mining in 2014, data on
                                             collars, downhole surveys, geological logging and analytical results have been
                                             loaded from CSV files as it becomes available. The upload process includes
                                             validation checks for consistency, including assessment of anomalous values.

                                             ·    As part of updating the geological model, all records are reviewed by
                                             experienced geologists against core photos in the context of the surrounding
                                             geological interpretation.

                                             ·    Measures are taken to ensure that data has not been modified, for
                                             example, due to transcription or typing errors, between initial collection and
                                             use for Mineral Resource estimation purposes. The process of validation is
                                             repeated annually.
 Site visits                                 ·    Mr Ian Glacken from Snowden Optiro visited the Sierra Gorda mine from
                                             1 to 6 March 2023 and reviewed geology and mineralisation in drill cores. Mr
                                             Glacken visited the open pit, the active DD site and the core logging
                                             facility. Discussions on site included review of QA/QC information, geological
                                             model, domain definition, database procedures, Mineral Resource modelling and
                                             model validation. Review of the GeoAssay laboratory in La Negra, Antofagasta
                                             was also completed.

                                             ·    Mr Omar Cortes, an employee of SGSCM, regularly visits all facilities
                                             and reviews all informing data and conducts regular assessments to ensure that
                                             relevant procedures are followed when collecting, assessing and interpreting
                                             data.

                                             ·    The findings of site visits indicate that data and procedures are of
                                             sufficient quality for Mineral Resource estimation and reporting.
 Geological interpretation                   ·    The geological model has been developed using lithology,
                                             mineralisation and alteration. Leapfrog software is used in developing 3-D
                                             volumes for geology and mineralisation.

                                             ·    The interpretation criteria considered for the lithological units is
                                             based on the conceptual model of the deposit, which considers a volcanic
                                             sequence (Quebrada Mala Formation, Maastrichtian; 73Ma to 65Ma), which is in
                                             contact with the Sierra Gorda intrusive complex (71Ma to 65Ma). Both units
                                             host porphyry bodies (Figure 2).

                                             ·    The alteration considers the interpretation of four main units
                                             (biotite, propylitic, sericite quartz and argillic), with biotite alteration
                                             being dominant. Biotite alteration is mainly characterised by pervasive
                                             replacement of mafic minerals by secondary biotite. The propylitic alteration
                                             is located in the periphery of the deposit. The sericite quartz alteration
                                             corresponds to the main hydrothermal alteration, presenting a wide spatial
                                             distribution affecting intrusives, volcanic rocks and intra-mineral
                                             porphyries. The argillic alteration is identified in the most supergene zone
                                             of the deposit and has a close genetic relationship with the secondary
                                             processes of sulphide leaching.

                                             ·    Copper mineralisation is defined on the basis of consideration of the
                                             following criteria.

                                             o  A hypogene zone is defined, which corresponds to the mineralisation of
                                             primary sulphides formed by the zones of primary pyrite and primary
                                             chalcopyrite.

                                             o  The supergene zone is formed by a process of rebalancing from hypogenic
                                             (hydrothermal) mineralogy to oxidising conditions near the earth's surface.
                                             The supergene event has generated three zones; leached, oxides and secondary
                                             enrichment.

                                             ·    Hypogene sulphide mineralisation forms most of the mineralisation,
                                             both in terms of volume and metal content. Hypogene copper sulphides consist
                                             predominantly of chalcopyrite.

                                             ·    Visual checks were made in 3D, plan and section views and
                                             interpretation anomalies were reviewed and modified as appropriate.

                                             ·    The geology is well understood due to the long history of exploration
                                             and mining in the area and alternate interpretations were therefore not
                                             considered.
 Dimensions                                  ·    The morphology and extent of the Mineral Resource of the Sierra Gorda
                                             deposit is a sub-vertical body with a diameter varying between 1,600m and
                                             2,000m. Currently, the mineralised system has been extended to a depth of
                                             1,800m.
 Estimation and modelling techniques         ·    Mineralisation domains were developed for each element of economic
                                             interest (CuT, MoT and Au). Seven copper domains, six molybdenum domains and
                                             three gold domains were defined based on mineral composition, alteration,
                                             lithology and grade cut-off. The domains were validated by exploratory data
                                             analysis (EDA).

                                             ·    Outlier assessment resulted in capping of high-grade values.
                                             Probability plots were generated to identify outliers. Composited data for MoT
                                             and Au were capped, while no capping was applied to CuT data.

                                             ·    Datamine's Supervisor Software was used for EDA, variography,
                                             Quantitative Kriging Neighbourhood Analysis (QKNA) and validation of the
                                             resource model. Maptek's Vulcan software was used for resource estimation and
                                             reporting.

                                             ·    QKNA was used to optimise estimation block size and search
                                             neighbourhood (i.e. minimum and maximum samples, number of samples per drill
                                             hole, octant definition). The parameters reviewed in the optimisation process
                                             were the slope of regression and kriging efficiency. A parent block size of
                                             15m in the X direction by 15m in the Y direction by 16m in the Z direction was
                                             used for estimation. No sub-blocking was considered due to the bulk scale of
                                             mining.

                                             ·    Ordinary kriging was used as the estimation method, with search
                                             ellipses defined as the full range of the respective variogram model. Three
                                             estimation passes were used by varying the minimum number of samples, with the
                                             first search representing the outcome from QKNA.  The minimum number of
                                             samples was reduced in subsequent passes, indicating reduced confidence in the
                                             remaining two passes of estimation. Finally, a fourth pass was defined for
                                             estimation by considering ten times the original search ellipse to identify
                                             potential for future exploration, using current understanding of the behaviour
                                             of mineralisation.

                                             ·    Kriging efficiency and slope of regression were recorded for each
                                             estimation run and for each element, to quantify estimation confidence.

                                             ·    The estimate was validated by:

                                             o  visual comparison of the block model with informing data in vertical
                                             sections and plans (Figure 6);

                                             o  scatter plots to compare estimated block with the nearest neighbour
                                             estimate;

                                             o  swath plots in three orthogonal directions (X, Y and Z) with a defined
                                             window to compare estimation with informing composited data (Figure 7);

                                             o  a discrete Gaussian change of support assessment to assess the level of
                                             smoothing and potential under- or over-estimation of grade; and

                                             o  comparison of the Mineral Resource estimate with a previous estimate which
                                             used a different estimation method and reconciliation with production data,
                                             indicating a reasonable correlation on a global and local scale.

                                             ·    Metallurgical recovery was derived for each block using the
                                             metallurgical recovery curve generated from metallurgical test work at
                                             different grade intervals.

                                             ·    No deleterious elements were considered for estimation.

                                             ·    Correlation between different grade elements was not considered in
                                             the estimation process. A correlation study will be completed, and the outcome
                                             of the study will be implemented in the next resource update.
 Moisture                                    ·    Based on experience of neighbouring deposits and preliminary
                                             assessment of drill cores, the moisture content appears to be minimal.

                                             ·    To date, the laboratory does not record sample weights before or
                                             after drying. A moisture study will be completed to verify the moisture
                                             content and to validate the dry bulk density assumption.
 Cut-off parameters                          ·    The Mineral Resource is defined by calculating a Net Smelter Return
                                             (NSR) (US$/tonne) and considering revenue using the JV partner agreed price
                                             protocol after accounting for metallurgical recovery and deducting mining,
                                             processing, transportation and G&A costs. The NSR formula is provided
                                             below.

                                             NSR (US$/t) = (Cu Price-Freight Cu Conc.) (US$/lb)*CuT*RecCu*(2205*lb/t)

                                             + (Mo Price - Freight Mo Conc.) (US$/lb)*MoT*RecMo*(2205*lb/t)

                                             + (Au Price - Freight Au Conc.) (US$/Oz)*AuT*RecAu/(31.1035gm/Oz)

                                             - ((Process + G&A) (US$/t) - (Mining (US$/t))

                                             t - tonnes

                                             Cu Conc. - copper in concentrate

                                             RecCu - metallurgical recovery of copper

                                             Mo Conc. - molybdenum in concentrate

                                             RecMo - metallurgical recovery of molybdenum

                                             Au Conc. - gold in concentrate

                                             RecAu - metallurgical recovery of gold
 Mining factors or assumptions               ·    A pit optimisation (using the Lerchs-Grossman algorithm) was
                                             completed to determine Reasonable Prospects for Eventual Economic Extraction
                                             (RPEEE) for defining the optimised resource boundary (both laterally and
                                             vertically) using the parameters in the Life of Mine Plan and JV agreed price
                                             protocol. Measured, Indicated and Inferred Resources were all considered as
                                             value contributors in the optimisation process.
 Metallurgical factors or assumptions        ·    Metallurgical recovery was assessed based on current operational
                                             performance and test work. The grade recovery curve was then derived from the
                                             inputs and is incorporated in the resource model for all paying elements (CuT,
                                             MoT and Au).
 Environmental factors or assumptions        ·    SGSCM follows a strict guideline of mitigating environmental risks
                                             inherent to operations. Some aspects considered in developing the strategic
                                             plan include energy and water efficiency, waste reduction, emissions
                                             reduction, control of particulate matter and promoting recycling and reuse of
                                             materials. There are defined targets which will result in minimising
                                             environmental impacts on the operation and within the community.

                                             ·    The tailings disposal has appropriate permits in place.

                                             ·    The waste dumps are designed to ensure slope stability.
 Bulk density                                ·    A total of 6,407 density measurements were completed by collecting
                                             samples from diamond drill cores. Outlier values (<2.1t/m(3) and
                                             >3.3t/m(3)) were removed before deriving average values for each lithology
                                             and alteration zone. No major variation is observed in density within each
                                             lithology.

                                             ·    Samples of 15cm to 20cm in size are selected from drill cores for
                                             density measurement. The sample is dried and coated with paraffin. Density is
                                             calculated by weighing the sample in air with and without paraffin and in
                                             water with paraffin, assuming the specific gravity of water to be 1 t/m(3).
                                             Average density is assigned per lithology in the resource model.
 Classification                              ·    A multi-criteria approach was used to classify the Mineral Resource.
                                              Initially an assessment of confidence was completed using the '90:15'
                                             method, in which the first number demonstrates confidence and the second
                                             number provides accuracy (e.g. a Measured Resource is defined using +/-15%
                                             accuracy with 90% confidence over a quarterly production volume). A second
                                             phase of assessment was conducted to consider the impacts of data quality,
                                             data density and geological uncertainty. Consequently, a combination of
                                             modelling criteria was used to refine the classification scheme, including the
                                             estimation pass, equivalent sample distance of the closest three samples and
                                             the slope of regression. The classification category outcome from complete
                                             assessment is as below.

                                             o  Measured: Applied to blocks where there is 90% confidence that the block
                                             grade is within 15% on a quarterly tonnage parcel and the average distance of
                                             the three nearest samples is less than 50m.

                                             o  Indicated: Applied to blocks where there is a 90% chance that the block
                                             grade is within 15% on an annual tonnage basis, the slope of regression is
                                             greater than 0.6 and the average distance of the three nearest samples is more
                                             than 50m.

                                             o  Inferred: Blocks within the variogram range, but which failed the above
                                             criteria.

                                             ·    The Competent Person is satisfied that the Mineral Resource
                                             classification (Figure 8) reflects the geological interpretation and the
                                             constraints of the deposit.
 Audits or reviews                           ·    In March 2023, Snowden Optiro was commissioned by South32 to conduct
                                             an audit of the Mineral Resource estimate. The audit did not identify any
                                             major shortcomings, and it was concluded that, in general terms, the process
                                             of generating the resource model has followed industry standards and the
                                             supporting documentation is adequate.

                                             ·    The audit suggested exploration of the possibility of further MoT and
                                             Au sub-domaining and to implement more robust validation process.
 Discussion of relative accuracy/confidence  ·    An assessment of confidence was conducted using a conditional
                                             simulation study. For each domain at the block dimension (15m X 15m X 16m), 70
                                             realisations were generated for CuT grades and were validated against the
                                             sample information. The realisations were re-blocked to reflect quarterly and
                                             annual production tonnage. The block dimensions were oriented to be laterally
                                             extensive, to mimic the mining technique at Sierra Gorda. A default average
                                             density for sulphide material was applied. The 90% confidence interval was
                                             compared to the mean grade of the realisations to derive accuracy +/-15%.

                                             o  annual tonnage assumption - 47Mt

                                             o  quarterly tonnage assumption - 12Mt

                                             ·    The Competent Person is satisfied that the accuracy and confidence of
                                             Mineral Resource estimation is well established and reasonable for the
                                             deposit.

Figure 1: Sierra Gorda SCM location map with tenement boundary

 

 

Figure 2: Regional geology map

 

 

Figure 3: Distribution of drill holes used in the resource estimation

 

Figure 4: Distribution of drill holes and the chalcopyrite mineralisation zone

 

Figure 5. Precision analysis of assay results for CuT% and MoT%

 

Figure 6: Vertical Section comparing estimation with drilling for CuT (%) at
Northing (Y) =4471210m

 

 

Figure 7: Swath Plots for % MoT, % CuT and g/t Au: in three orthogonal
directions

 

Figure 8: Mineral Resource classification with drilling at Northing (Y)
=4471445m at NSR>US$0/t

 

 

 1  Australasian Code for Reporting of Exploration Results, Mineral Resources
and Ore Reserves, 2012

 2  CuEq (%) is copper equivalent which accounts for combined grade of copper,
molybdenum and gold. Metals are converted to CuEq via unit value calculations
using long term consensus metal price assumptions and relative metallurgical
recovery assumptions. The metal price is commercially sensitive and is not
disclosed here. The average metallurgical recoveries are 85% for copper (Cu),
55% for molybdenum (Mo), and 39% for gold (Au). The formula used for
calculation of copper equivalent is CuEq = Cu (%) + 2.3 * Mo (%) + 0.275 * Au
(g/t).

 3  The stockpiled oxide material referred to in this announcement is not
included as Mineral Resource and South32 cannot confirm whether the estimate
has been compiled using an appropriate foreign reporting code.

This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact
rns@lseg.com (mailto:rns@lseg.com)
 or visit
www.rns.com (http://www.rns.com/)
.

RNS may use your IP address to confirm compliance with the terms and conditions, to analyse how you engage with the information contained in this communication, and to share such analysis on an anonymised basis with others as part of our commercial services. For further information about how RNS and the London Stock Exchange use the personal data you provide us, please see our
Privacy Policy (https://www.lseg.com/privacy-and-cookie-policy)
.   END  DRLUSVVROKUWURR

Recent news on South32

See all news